Aufgabe 2 zur Vorlesung

Numerische Methoden der Mechanik

Ausgabe 04.11.2004

9	
1. Bearbeiter:	Matrikel-Nr.:
2. Bearbeiter:	Matrikel-Nr.:
3. Bearbeiter:	Matrikel-Nr.:
Als Leistungsnachweis sind die nachfolgenden Au Lösungsschritte entsprechend zu dokumentieren	-
Eventuell ist dieses Aufgabenblatt zum Programmier-Umgebung besser geeignet als vielleicht, hiermit z	das erste. Für manchen empfiehlt es sich
I. Bestimmen Sie die Nullstelle x^* von	
$f(x) = -x^2 - x^2$	$\sin(x) + 10$
mit dem Newtonschen Iterationsverfahren Nachkomma-Stellen exakt.	mit $x^{(0)} = 0$ bis auf mindestens sechs
II. Bestimmen Sie die Nullstelle \mathbf{x}^* von	
$\mathbf{F}(\mathbf{x}) = \begin{bmatrix} x^2 + \\ 2x \end{bmatrix}$	$\left[\frac{2y^2 - 1}{x^2 - y^2} \right]$

mit dem Newtonschen Iterationsverfahren mit $\mathbf{x}^{(0)} = [0.5\,0.5]^{\mathrm{T}}$ bis auf eine Abbruchtoleranz von $TOL=10^{-9}$ genau.