

ABAQUS-Anleitung

SoSe 2020

HERBERT BAASER

Stand:

06.04.2020

Autoren, Entstehung, ...

- HERBERT BAASER
- Daniel Häuschen

im Wintersemester 2017/2018

Allgemein Über die "FEM" und ihre Geschichte

Video von Gilbert Strang
 https://www.youtube.com/embed/WwgrAH-IMOk

Literatur

- Baaser "Development and Application of the Finite Element Method Based on MatLab", Springer
- Baaser: OLAT-online-Skript
- Knothe & Wessels: <u>Finite Elemente</u>, Springer ebook
- Gross / Hauger / Schnell / Wriggers "<u>Technische Mechanik 4</u>", Springer
- Nasdala, <u>FEM-Formelsammlung</u>, Springer

Allgemein FEM-Programm-Systeme

- Tutorial mit ABAQUS → CAE ("Complete Abaqus Environment")
- Anwendung anderer Programme vom Aufbau gleich
 - ANSYS, MARC, ...

Allgemein Abaqus Lehr- und Studentenversionen

- Studentenversion frei erhältlich
 - https://academy.3ds.com/en/software/abaqus-student-edition
- Lehrversion im Rechnerraum
 - R1-236/237 @ TH Bingen

Allgemein Systematik – Übersicht

Vorbereitung

preprocessing

Lösung solver / solution

Nach-/Aufbereitung postprocessing

Tutorial Beispiel Lochscheibe

Material: lineare Elastizität $E = 210^{\circ}000 \text{ N/mm}^2$ v = 0.3

gesucht:

Spannungsverlauf in Zugrichtung im Schnitt a-a

aus:

Allgemein Start von ABAQ-CAE unter Windows 10

Öffnen mit Standard/Explicit Model

Allgemein Benutzeroberfläche ABAQ-CAE

Allgemein Anlegen eines neuen Verzeichnisses

- Arbeitsverzeichnis und Speicherort festlegen
 - z.B. eigenen USB-Stick auswählen | eigene Datenstruktur!
- File → Set Work Directory

Hier auch Modell als *.cae abspeichern und sichern !!

Allgemein Modeleigenschaften festlegen

Preprocessing Inhalt

- Festlegen von
 - Geometrie
 - 2D-/3D-Geometrie
 - axial-/rotationssymmetrische Geometrie
 - Material
 - Vernetzung
 - Randbedingungen
 - Belastungen

Auswahlbaum → Parts → Create

- Model erzeugen
 - Name
 - Modeling Space
 - Type
 - Base Feature
 - Approximate size

Beispiel Lochscheibe

- Festlegen der Eigenschaften der Geometrie durch Sketch-Tool
 - 2D
 - 3D
 - axial-/rotationssymmetrisch
- oder Import aus CAD z.B. *.STEP

Module: Part Model: Model-1 Zeichnen der Geometrie in 2D Zeichentools **2**! A 4···+ **>>** Beenden der Skizze $\Box f(x)$ 1) (F ----- **---**Υ X Sketch the section for the planer shell Done

Preprocessing Geometrie Beispiel

Skizze Beispiel Lochscheibe

Preprocessing Geometrie Beispiel

2D Model Beispiel Lochscheibe

Preprocessing Material

- Property = Eigenschaften der Geometrie
 - Material
 - Definition der Materialeigenschaften
 - Section
 - Zuweisung von Material zu Geometrie
 - Asign Section
 - Geometrie wird mit Material verknüpft (Section wird Part zugewiesen)

Preprocessing Material

- Auswahl Materialmodel
- Auswahlbaum -> Sections -> Create
 - Name
 - Category
 - Type

Preprocessing Material

Auswahl von Materialien

Preprocessing Material Beispiel

- Auswahl eines Materials am Beispiel Lochscheibe
 - Name
 - Materialeigenschaft

Preprocessing Material Beispiel

- Eigenschaft Material
 - Elastizitätsmodul in N/mm²
 - Poissonzahl/Querkontraktion

Beispiel Lochscheibe

Preprocessing Material

Verwaltung der Materialien und Sektionen

Preprocessing Material Beispiel

Material der Geometrie zuweisen

Preprocessing Material Beispiel

Material der Geometrie zuweisen

Auswahlbaum -> Part -> Engineering Features -> Mesh

- Netzgröße definieren
 - Größe des Netzes der Simulation anpassen

- Elementtyp definieren
 - Symbol auswählen und Bauteil markieren

Vernetzungsart definieren

Preprocessing Vernetzung Beispiel

Bauteil vernetzen

Preprocessing Modifizierte Vernetzung

Netz verfeinern entlang einer Kante

Preprocessing Modifizierte Vernetzung

Auswahl Vernetzung / Anzahl Elemente

Preprocessing Modifizierte Vernetzung

Netzt verfeinern entlang einer Kante und Richtung

Preprocessing Assembly

- Modelle können aus mehreren Parts bestehen (Baugruppe)
- Jeder Part ist unabhängig in einem eigenem Koordinatensystem definiert
- Um eine Baugruppe zusammen zu bauen, werden die einzelnen Parts in einem globalen Koordinatensystem zueinander ausgerichtet.

Preprocessing Assembly

Preprocessing Steps

- Definition der Belastungsschritte
- Es können mehrere Zustände für eine Geometrie erzeugt werden.

Preprocessing Steps

Auswahlbaum → Steps → Create

Preprocessing Steps

Auswahlbaum → Steps → Step Last → BCs → Create

- Festlegen der Randbedingung
 - für jede Randbedingung neu ...

Auswahl der betreffenden Knotengruppe (→ "set")

Freiheitsgrade auswählen

Auswahlbaum → Steps → Step Last → Loads → Create

Art der Belastung

Belastung an Geometrie festlegen

Belastung definieren

	Edit Load			\times
	Name: Loa	d-1		
	Type: Pre	ssure		
Step: Step-1 (Static, General)				
Region: Surf-1 🝃				
	Distribution:	Uniform	~	f(x)
	Magnitude:	-25		
	Amplitude:	(Ramp)	~	\sim
	Amplitude:	(Ramp)	~	₩
	Amplitude:	(Ramp)	<u> </u>	₽-
	Amplitude:	(Ramp)	<u> </u>	₽-
	Amplitude:	(Ramp)	<u> </u>	₽-

Geometrie mit Randbedingung und Belastung

Zusammenfassung Preprocessing

- Part: Geometrie erstellen/laden
- Property
 - Material
 - Section
 - Section → Material
- Mesh: Elementauswahl & Vernetzung
- Assembly: Parts → Instance
- Loads: Definition der Randbedingung & Lasten
- Steps: Belastungszustände

Solution Inhalt

nummerische Lösung initiieren

Auswahlbaum → Analysis → Job → Create

neuen Job erstellen

Create Job	\times
Name: Job-1	
Source: Model	~
Model-1	
Continue	Cancel

Berechnungseinstellungen festlegen

Berechnung ausführen

Postprocessing

Ergebnis-Datei öffnen

Visualisierung der Ergebnisse

Deformation anzeigen

- Anzeigen von Kontur-Plots
 - hier ("default"): VON MISES Vergleichsspannung

- Ausgabe der Ergebnisse in Diagramm (X-Y-Plots)
- Exportieren der Plots in andere Programme
 - EXCEL, MATLAB...

Auswahlbaum → Create X-Y-Data

Auswahl der darzustellenden Größen

- Auswahl der darzustellenden Elementen/Knoten
 - Methode auswählen
 - Auswahl der Elemente am Model

- Ausgabe der ausgewählten Größen im Diagramm
 - Beispiel Übung 1
 - Ausgabe der einzelnen Reaktionskräfte bezogen auf die Knoten

Postprocessing Arbeiten mit X-Y-Plots

Auswahlbaum → Create X-Y-Data

Postprocessing Arbeiten mit X-Y-Plots

Postprocessing Arbeiten mit X-Y-Plots

Ausgabe der summierten Reaktionskräfte im Diagramm

Export von Daten in RPT-Datei

Auswahl der zu exportierenden Daten

Setup und Speicherort festlegen

Report XY Data				
XY Data Setup				
File				
Name: RF_1_16k_ Y _rpt Select				
Append to file				
Output Format				
Layout: Single table for all XY data				
☐ Interpolate between X values (if necessary)				
Separate table for each XY data				
Page width (characters): No limit Specify: 80				
Number of significant digits: 6 🖶				
Number format: Engineering				
Data				
Write: ☑ XY data ☐ Column totals ☐ Column min/max				
OK Apply Defaults Cancel				

- Ausgabe von Daten entlang eines Pfades
 - Path → Create

Auswahl der Knoten

Auswahlbaum → Create XY Data → Path

Prof. Dr.-Ing. habil. **Herbert Baaser** "Engineering Mechanics & Finite Element Methods"

Dept. 2 – Mech. Eng. Berlinstr. 109 55411 Bingen am Rhein, Germany

Fon + 49 6721 409 132 H.Baaser@TH-Bingen.de TU Darmstadt FB13 - Solid Mechanics 64287 Darmstadt

